Myeloperoxidase Enhances Etoposide and Mitoxantrone-Mediated DNA Damage: A Target for Myeloprotection in Cancer Chemotherapy

نویسندگان

  • Mandeep Atwal
  • Emma L. Lishman
  • Caroline A. Austin
  • Ian G. Cowell
چکیده

Myeloperoxidase is expressed exclusively in granulocytes and immature myeloid cells and transforms the topoisomerase II (TOP2) poisons etoposide and mitoxantrone to chemical forms that have altered DNA damaging properties. TOP2 poisons are valuable and widely used anticancer drugs, but they are associated with the occurrence of secondary acute myeloid leukemias. These factors have led to the hypothesis that myeloperoxidase inhibition could protect hematopoietic cells from TOP2 poison-mediated genotoxic damage and, therefore, reduce the rate of therapy-related leukemia. We show here that myeloperoxidase activity leads to elevated accumulation of etoposide- and mitoxantrone-induced TOP2A and TOP2B-DNA covalent complexes in cells, which are converted to DNA double-strand breaks. For both drugs, the effect of myeloperoxidase activity was greater for TOP2B than for TOP2A. This is a significant finding because TOP2B has been linked to genetic damage associated with leukemic transformation, including etoposide-induced chromosomal breaks at the MLL and RUNX1 loci. Glutathione depletion, mimicking in vivo conditions experienced during chemotherapy treatment, elicited further MPO-dependent increase in TOP2A and especially TOP2B-DNA complexes and DNA double-strand break formation. Together these results support targeting myeloperoxidase activity to reduce genetic damage leading to therapy-related leukemia, a possibility that is enhanced by the recent development of novel specific myeloperoxidase inhibitors for use in inflammatory diseases involving neutrophil infiltration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estrogen-induced potentiation of DNA damage and cytotoxicity in human breast cancer cells treated with topoisomerase II-interactive antitumor drugs.

Hormone stimulation of responsive neoplasms is a potential strategy for improving the target selectivity of cancer chemotherapy. Using an alkaline DNA-unwinding technique to detect drug-induced DNA strand breakage, we have shown that estrogen stimulation of T-47D human breast cancer cells enhances induction of DNA cleavage by etoposide (VP-16), 4',9-acridinylaminomethanesulfon-m-anisidide (m-AM...

متن کامل

Distinct signaling events promote resistance to mitoxantrone and etoposide in pediatric AML: a Children’s Oncology Group report

Despite aggressive chemotherapy including mitoxantrone and etoposide, relapse occurs for almost half of children with acute myeloid leukemia (AML). Since both drugs inhibit topoisomerase II and cause DNA double strand breaks, resistance could be achieved by enhanced DNA damage repair (DDR), via homologous recombination (HR) and/or non-homologous end joining (NHEJ). An important source of extrin...

متن کامل

Analysis of the Repair of Topoisomerase II DNA Damage

A large number of anti-cancer chemotherapeutics target DNA topoisomerases. Etoposide is a specific topoisomerase II poison that causes reversible double strand DNA breaks. This project analyses the repair of DNA damage induced by etoposide, a common anti-cancer chemotherapeutic. Through the comparison of two known DNA repair pathways, anti-cancer chemotherapy may become more cytotoxic. Double s...

متن کامل

Roles of DNA topoisomerase II isozymes in chemotherapy and secondary malignancies.

Drugs that target DNA topoisomerase II (Top2), including etoposide (VP-16), doxorubicin, and mitoxantrone, are among the most effective anticancer drugs in clinical use. However, Top2-based chemotherapy has been associated with higher incidences of secondary malignancies, notably the development of acute myeloid leukemia in VP-16-treated patients. This association is suggestive of a link betwee...

متن کامل

Cross-resistance to Vincristin and Etoposide in a sub line of the human breast cancer T47D cells selected for Adriamycin-resistance

Breast cancer is one of the most common malignancies among women. Although chemotherapy remains a major therapeutic approach to treat cancers, drug therapy often fails for several reasons, particularly the drug resistance. Resistance to multiple chemotherapeutic agents is one of the most important problems in the treatment of different types of cancers. Therefore, in this study a resistant sub ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 91  شماره 

صفحات  -

تاریخ انتشار 2017